Seconde

Activité expérimentale :

Fabriquer un sablier chimique

L'évolution de certaines transformations chimiques est un moyen d'estimer des durées. Celle mise en jeu dans la bouteille bleue est un exemple.

<u>Problématique</u>: Comment déterminer les masses des entités chimiques pour réécrire le protocole permettant de confectionner la bouteille bleue ?

Information 1 : À propos de quelques atomes

	Écriture conventionnelle du noyau
atome d'hydrogène	1H
atome d'oxygène	¹⁶ ₈ O

	masse
atome de sodium	$m_{Na} = 3.82 \times 10^{-26} \text{ kg}$
atome de carbone	$m_C = 2,00 \times 10^{-26} \text{ kg}$

Information 2 : Masse d'un nucléon

$$m_n = 1,67 \times 10^{-27} \text{ kg}$$

<u>Information 3 : Pictogramme de danger</u>

Hydroxyde de sodium NaOH

Information 4 : La mole, unité de quantité de matière

Les chimistes regroupent les entités chimiques par paquets. Chaque paquet, appelé mole, contient un nombre fixé d'entités chimiques identiques.

Une mole d'entités chimiques contient 6,02 × 10²³ entités chimiques identiques.

La mole, de symbole mol, est l'unité de quantité de matière.

Protocole:

- Introduire 5,6 mol d'eau et 5,0 × 10⁻² mol d'hydroxyde de sodium dans un erlenmeyer.
- Y dissoudre 1,1 × 10⁻² mol de glucose.
- Ajouter 5 gouttes de bleu de méthylène.
- Fermer l'erlenmeyer puis agiter (pendant environ 30 s) pour observer une coloration.
- Lorsque le mélange est incolore, l'agiter de nouveau.

Travail n°1:

- 1. Montrer que la masse d'une molécule d'eau est 3,01 × 10⁻²⁶ kg.
- 2. Calculer la masse d'une entité NaOH.
- 3. Calculer la masse d'une molécule de glucose C₆H₁₂O₆.
- 4. Calculer le nombre d'entités NaOH à introduire dans l'erlenmeyer pour réaliser le protocole.
- 5. Calculer le nombre de molécules d'eau à introduire dans l'erlenmeyer pour réaliser le protocole.
- 6. En déduire les masses d'eau et d'hydroxyde de sodium à introduire dans l'erlenmeyer.
- 7. Vérifier que la première étape du protocole revient à prélever 100 mL d'une solution aqueuse de concentration en masse 20 g/L en hydroxyde de sodium.
- 8. Déterminer la masse de glucose à dissoudre dans l'erlenmeyer.

Travail n°2:

Réécrire le protocole expérimental en indiquant le volume et les masses à prélever. Appeler le professeur pour vérifier.

Travail n°3:

Mettre en œuvre le protocole expérimental en respectant les consignes de sécurité.

Travail n°4:

Justifier le fait que la transformation chimique mise en jeu dans la bouteille bleue peut servir de sablier chimique.