FICHE: DERIVEES ET PRIMITIVES

	En mathématiques	En physique chimie
Variable	x	t
fonction	y(x)	y(t)
Fonction dérivée	y'(x)	$\frac{dy(t)}{dt}$ ou plus simplement $\frac{dy}{dt}$
	(on dérive par rapport à x)	(on dérive par rapport à t)

On DERIVE la fonction f(t) par rapport au temps t

« $\frac{df(t)}{dt}$ » est la fonction dérivée de la fonction « f(t) ».

Fonction $f(t)$	Fonction dérivée $\frac{dy(t)}{dt}$
f(t) = a	$\frac{df(t)}{dt} = 0$
$f(t) = a \times g(t)$	$\frac{df(t)}{dt} = a \times \frac{dg(t)}{dt}$
$f(t) = a \times t + b$	$\frac{df(t)}{dt} = a$
$f(t) = a \times t^2 + b$	$\frac{df(t)}{dt} = 2 \times a \times t$
$f(t) = \frac{1}{2} \times a \times t^2 + b$	$\frac{df(t)}{dt} = a \times t$
$f(t) = e^t + b$	$\frac{df(t)}{dt} = e^t$
$f(t) = e^{a \times t} + b$	$\frac{df(t)}{dt} = a \times e^{a \times t}$

On INTEGRE la fonction $\frac{df(t)}{dt}$.

« f(t) » est une primitive de la fonction « $\frac{df(t)}{dt}$ ».

Remarque: « a » et « b » sont deux constantes par rapport au temps.

Application à la mécanique : par définition $v_x(t) = \frac{dx(t)}{dt}$ et $a_x(t) = \frac{dv_x(t)}{dt}$ Si x(t) = a déterminer $v_x(t)$ et $a_x(t)$

 $\operatorname{Si} x(t) = a.t + b \ \operatorname{d\acute{e}terminer} v_x(t) \ \operatorname{et} a_x(t)$

Si $x(t) = \frac{1}{2}a.t^2 + b.t + c$ déterminer $v_x(t)$ et $a_x(t)$

De même si $v_x(t) = a$ déterminer x(t) et $a_x(t)$

De même si $v_x(t) = a.t + b$ déterminer x(t) et $a_x(t)$

De même si $a_x(t) = a$ déterminer $v_x(t)$ et x(t)